
1 METHODS TO MODEL A ROCK MASS FALL 
USING PFC 

PFC models the movements and interactions of stressed 
assemblies of spherical particles either in or getting into 
contact with wall elements. The particles may be bonded 
together at their contact points to represent a solid that may 
fracture due to progressive bond breakage.  

Every particle is checked on contact with every other 
particle at every time step. Thus, PFC can simulate not only 
failure mechanisms of rock slopes but also the runout of a 
detached and fractured rock mass (Poisel & Roth 2004).  

Rock mass falls can be modelled as an “All Ball model” 
and a “Ball Wall model”. An “All Ball model” (Fig. 1) 
simulates the slope as an assembly of balls bonded together. 
The simulation shows the failure mechanism of the slope 
due to gravity (Poisel & Preh 2004). After detachment of 
the moving mass, the runout is modelled automatically. As 
in every other numerical model, the material represents only 
a hypothetical material. In reality, a large number of blocks 
are moving downslope. Due to a restricted number of balls, 
due to software and computation time reasons, it is 
generally not possible to model every rock block with a 
single ball.  

In the “Ball Wall model” (Fig. 2) the underlying bedrock 
is simulated by linear (2D) and planar (3D) wall elements 
(Roth 2003). Therefore, an estimate or a model of the 
failure mechanism of the slope and of the detachment 
mechanism is needed as an input parameter. However, in 
the “Ball Wall model” the detached mass can be modelled 
using more and smaller balls with the same computational 
effort in order to approach reality better. The “Ball Wall 
model” offers the possibility to make use of the know-how 
related to runout relevant factors (coefficients of restitution, 

absorption, friction, etc.) applied in rock fall programs 
(Hoek 1987, Spang & Rautenstrauch 1988).  

 

 
Figure 1. All Ball model (Preh 2004) 

 
Figure 2. Ball Wall model (Frühwirth 2004) 
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ABSTRACT: Rock mass falls are modelled as the movements of single rock blocks over a surface or as the movement of a 
viscous mass over a surface (DAN). In reality a mass of discrete, interacting rock blocks is moving downslope. Thus, the 
program PFC (Particle Flow Code) based on the Distinct Element Method was used to model rock mass falls realistically in 
3 dimensions, based on physical relations. PFC models the movement and interaction of circular (2D) or spherical (3D) 
particles and wall elements, using the laws of motion and of force - displacement. During the calculation, the contacts 
between particles and particles or particles and walls are detected automatically. The particles may be bonded together at 
their contact points, and the bondage can break due to an impact. For realistic modelling of a runout a viscous damping 
routine in case of a particle – wall contact was introduced. Numerical drop tests, comparisons with the results of a rock fall 
program and back analyses of several rock mass falls provided appropriate damping factors. Thus, the movement types - 
bouncing, sliding, rolling and free falling of single rock blocks - and the interaction between the blocks occurring in a rock 
mass fall can be realistically modelled by using the PFC adapted code.  



2 RUNOUT RELEVANT PARAMETERS 

According to observations in nature, several kinds of 
movements of the rock fall process (Broilli, 1974) have to 
be distinguished during the computation (Bozzolo, 1987):  

● free falling, 
● bouncing, 
● rolling and  
● sliding. 

In order to achieve an appropriate simulation of these 
different kinds of movements by PFC, some modifications 
have been necessary using the implemented programming 
language (Fish). 

2.1 Free falling 

In order to model the free falling of blocks, neither the 
acceleration nor the velocity (ignoring the air resistance) is 
to be reduced during fall as a consequence of mechanical 
damping. 

PFC applies a local, non- viscous damping proportional to 
acceleration, to the movement of every single particle as a 
default. The local damping used in PFC is similar to that 
described in Cundall (1987). A damping-force term is added 
to the equations of motion, so that the damped equations of 
motion can be written 
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where F(i), M(i), and A(i) are the generalized force, mass, and 
acceleration components, I is the principal moment of 
inertia, ω&  is the angular acceleration and x&&  is the 
translational acceleration; F(i) includes the contribution from 
the gravity force; and Fd

(i) is the damping force 
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expressed in terms of the generalized velocity 
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The damping force is controlled by the damping constant α, 
whose default value is 0.7 and which can be separately 
specified for each particle. 

This damping model is the best suited for a quick 
calculation of equilibrium. There arises, however, the 
disadvantage of the movements of the particles being 
damped as well. Therefore, the local damping has been 
deactivated for all kinds of particle movements. 

2.2 Bouncing 

Elastic and plastic deformations occur in the contact zone 
during the impact of a block. Both the kinetic energy of the 
bouncing block and the rebound height are reduced by the 
deformation work. The reduction of the velocity caused by 
the impact is modelled with the help of a viscous damping 
model integrated in PFC. 

The viscous damping model used in PFC introduces 
normal and shear dashpots at each contact (Fig. 3). A 
damping force, Di (i = n: normal, s: shear), is added to the 
contact force, of which the normal and shear components 
are given by 
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where Ci (i = n: normal, s: shear) is the damping constant, 
Vi (i = n: normal, s: shear) is the relative velocity at  
contact, and the damping force acts to oppose motion. The 
damping constant is not specified directly; instead, the 
critical damping ratio βi (i = n: normal, s: shear) is specified, 
and the damping constant satisfies 
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where Ccrit
i is the critical damping constant, which is given 

by 
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where ωi (i = n: normal, s: shear) is the natural frequency of 
the undamped system, ki (i = n: normal, s: shear) is the 
contact tangent stiffness, and m is the effective system 
mass. 

 

 
Figure 3. Viscous damping activated at a contact with the linear 
contact model (Itasca 1999) 

In rock fall programs, the rebound height of blocks 
touching the bedrock is calculated using restitution 
coefficients. The restitution coefficient Ri (i = n: normal, 
s: shear) is defined as the ratio of the contact velocity before 
and after the impact and can be defined as  
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where vi
f (i = n: normal, s: shear) is the velocity of the block 

after impact and vi
i  (i = n: normal, s: shear) is the velocity 

of the object before impact. The relation between the 
restitution coefficient Ri and the critical damping ratio βi 
can be estimated by simulating drop tests (Fig. 4).  

 



 
Figure 4. Relation between restitution coefficient and critical 
damping ratio (Itasca 1999) 

 

 
Figure 5. Drop tests, course of velocity: dashed line – local 
damping α = 0.7, full line – RN = 0.71, dotted line – RN = 0.5 

 
Figure 6. Drop tests, rebound height: dashed line – local damping 
α = 0.7, full line – RN = 0.8, dotted line – RN = 0.5 

Figures 5 and 6 show the results of a drop test for 
verification of the viscous damping model, where the 

rebounds of three differently damped particles have been 
investigated: the first one using the default value of the non 
viscous damping (α = 0.7), the second one using the viscous 
damping with a critical damping ratio βn of 0.27 and the 
third one using the viscous damping with a critical damping 
ratio βn of 0.12. 

The critical damping ratios selected for this comparison 
equal the restitution coefficient RN = 0.5 (βn = 0.27) and 
0.71 (βn = 0.12) according to the drop tests back calculated 
by Itasca (Fig. 4) This is verified by the course of the 
particle velocities (Fig. 5).  

According to the conservation of energy, a restitution 
coefficient RN = 0.5 results in a rebound height of a quarter 
of the drop height and a restitution coefficient RN = 0.71 
results in a rebound height of half the drop height. This is 
verified by the course of the rebound height (Fig. 6).  

Thus, it is possible to control the number of impacts as 
well as the magnitude of the bouncing height, using the 
viscous contact damping model. 

Spin has an impact on both the direction and the velocity 
of the rebounding block. Therefore, it is essential to 
consider the spinning when modelling the runouts of rock 
falls. PFC determines the motion of a each single particle by 
the resultant force and moment vectors acting upon it, and 
describes it in terms of the translational motion of a point in 
the particle and the rotational motion of the particle 
(Equations 1 and 2). Figure 7 depicts the flight trajectories 
of three particles bouncing at different spins. 

 

 
Figure 7. Rebound angle influenced by the particle spin  
(black line – rebound course; green, yellow and red balls – particle 
position after rebound) 

Furthermore, with PFC the interaction of friction and spin 
is considered, since the influence of the spin increases with 
the increase of frictional resistance. 

By modelling rock mass falls, it was shown to be 
necessary to distinguish between ball-ball contacts and ball- 
wall contacts. This was done by using the programming 
language Fish.  

2.3 Rolling 

The most important runout relevant effect is rolling 
resistance, because it is known that pure rolling of blocks in 



the model leads to more extensive runouts than observed in 
nature. 

The rolling resistance is caused by the deformation of the 
rolling body and/or the deformation of the ground (Fig. 8) 
and depends strongly on the ground and the block material. 

 

 
Figure 8. Deformation of the surface and distribution of contact 
stresses 

Due to these deformations, the distribution of contact 
stresses between the ground and the block is asymmetric 
(Fig. 9). Replacing the contact stresses by equivalent static 
contact forces results in a normal force N, which is shifted 
forward by the distance of crr , and a friction force Frr , 
opposing the direction of the movement.  
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Figure 9. Calculation of the rolling resistance 

The deceleration of the angular velocity caused by the 
rolling resistance is calculated using conservation of 
translational momentum (Equation 9) and angular 
momentum (Equation 10).  
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where Mrr is the resulting moment caused by the rolling 
resistance, I is the principal moment of inertia and ωrr is the 
angular deceleration. 

The kinematic link is established by the condition of pure 
rolling (Equation 11).  
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The angular acceleration is defined by a finite difference 
relation in order to express the increment of the angular 
velocity per time increment (Equation 12). Thus, the friction 
force Frr iis defined by the conservation of momentum 
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Equation 10 and equation 12 yield  
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Therefore, the angular deceleration is  
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The rolling resistance is implemented by adding the 
calculated increment of the angular velocity, to the angular 
velocity calculated automatically by PFC at every time step 
(Equation 14).  
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According to these considerations, the rolling resistance is 
an eccentricity crr or sag function urr. The deeper the block 
sags, the greater is the rolling resistance Δωrr. In classical 
mechanics, the rolling resistance is a function of the ratio of 
the eccentricity crr to the radius r. 
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This means that spherical blocks of different sizes have 
the same runout for the same rolling resistance coefficient. 

In nature, however, it can be observed that large blocks 
generally have a longer runout than smaller ones. Therefore, 
according to the damping model described, the runout is 
calibrated by the sag urr.  

Figures 10a-10d show model calculations carried out by 
PFC, using the model of rolling resistance just described. 
The detached rock mass was modelled as an irregular 
assembly of particles (Fig. 10a) of two different sizes 
(r1 = 0.8 m, r2 = 1.6 m). For both particle sizes, the same 
sag of urr = 25 cm was employed.  Figure 10b shows the 
position of the runout and figures 10c and 10d show a 
detailed view of the runout. It therefore became apparent 
that the larger particles have a longer runout than smaller 
ones. Fig. 10d shows that within the deposit mass the 
smaller particles (r = 0.8 m) rest at the bottom and the larger 
particles (r = 1.6 m) at the top. This model behaviour 
corresponds closely to observations in nature.  



 
Figure 10a. Detached rock mass   

 
Figure 10b. Final state of the PFC2D calculations 

 
Figure 10c. Deposit 

 
Figure 10d. Deposit, detail view 

2.4 Sliding 

Sliding is calculated by the slip model implemented in PFC 
without any further adaptation.  

3 CONCLUSION 

The model described above was used to calculate the runout 
distances and the risks of the mass movement Lärchberg – 
Galgenwald (Austria; Fig. 11; Poisel et al. 2007). 

With the help of the adapted PFC code it is possible to 
create a mechanically correct model of rock mass falls. A 
realistic prognosis of runouts necessitates a calibration of 
relevant runout model parameters by back calculation of 
silent witnesses (blocks having fallen down already). 
 

 

 
Figure 11. Plan view of final state of runout simulation of a rock 
mass fall using PFC3D.  
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