
4th International FLAC Symposium on Numerical Modeling in Geomechanics – 2006 – Hart & Varona (eds.)     Paper: 01-03 
© 2006 Itasca Consulting Group, Inc., Minneapolis, ISBN 0-9767577-0-2 

1 INTRODUCTION 
 
FLAC3D is a powerful tool to analyze the stability of 
rock slopes and valley flanks. The necessary three-
dimensional grid to solve such problems has to be 
built up and adjusted by the user. This paper tries to 
investigate the influence of the mesh resolution and 
the shape of the zones on the calculated state of lim-
ited equilibrium (factor of safety) and detached rock 
volume.  

The importance of a well-shaped mesh is illus-
trated by the stability analysis of a mass movement 
in Tyrol/Austria. The investigated area is 3.5 km 
long and 2.5 km wide (Fig. 1) and covers an alpine 
valley with elevations ranging from 800 m to 1925 
m a.s.l.. 

 
 

 
Figure 1. Problem domain. 

The meshes of the models are based on a digital 
terrain model (DTM) with a horizontal grid distance 
of 50 and 100 meters respectively. 

 

2 GENERAL RULES FOR DESIGNING A MESH 
 

2.1 Use relatively fine discretizations 
The finite difference zones assume that the stresses 
and strains within each zone do not differ in position 
within the zone – in other words, the zones are low-
est-order elements. In order to capture stress and 
strain gradients within the slope adequately, it is 
necessary to use fine discretizations. The problem is 
that the solution time increases significantly by in-
creasing the mesh resolution, especially in the case 
of a three-dimensional analysis. The solution time 
for a FLAC3D run is proportional to N4/3, where N is 
the number of zones. 

 

2.2 Use uniform zone dimensions 
Large varieties in the dimensions of the zones may 
influence the solution time considerably and may 
provide unsatisfying results. Therefore the zoning 
should be as uniform as possible, particularly in the 
region of interest. Long, thin zones with aspect ra-
tios greater than 5:1 and jumps in zone size should 
be avoided. Far away from the region of interest 
(far-field) the aspect ratios may be 20:1 or more.  
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ABSTRACT: The design of finite difference meshes for solving three-dimensional problems is always a com-
promise between accuracy and computation time. In order to analyze the stability of rock slopes the mesh has 
to be detailed enough to calculate the state of limited equilibrium (factor of safety) and to evaluate the possi-
ble detached rock volume with acceptable accuracy. The influence of the mesh resolution and the shape of the 
zones have been investigated in the case of the analysis of a mass movement in Tyrol/Austria. The results var-
ied in the calculated factor of safety, in the formation of the shear band and in the determined moving mass. 
Some important conclusions derived from this study show how to build up an improved mesh for slope 
stability analyses. 



3 THREE TYPES OF MESHES TO SOLVE THE 
PROBLEM 

Three different types of meshes were generated to 
solve the problem: 
− Type A: Constant number of zones for each col-

umn.  
− Type B:  Constant number and height of zones for 

each column. 
− Type C:  Constant number and height of zones 

only in the region of interest (fine zoning). 

3.1 Type A 
Generating a slope (with big differences in the ter-
rain surface) will result in very plane zones at the 
toe and comparatively high zones at the top of the 
slope. Such a mesh has no uniform zone dimensions, 
especially in the region of interest (Fig. 2).  

3.2 Type B 
By moving the grid points parallel to the surface a 
mesh with only uniform zones is generated. Calcula-
tions to compare this mesh with Type A showed dif-
ferent results in the stability of the slopes. There is a 
problem with the establishment of the boundary con-
ditions at the base of the model, which is not plane 
but parallel to the surface (Fig. 3).  

3.3 Type C 
A compromise between Type A and Type B is a 
model with uniform zones, especially in the region 
of interest (upper layer, dark grey zones in Fig. 4), 
and a plane base to allow the right establishment of 
the boundary conditions. This ideal mesh was gener-
ated by moving the zones parallel to the surface in 
the upper layer and producing a plane base by creat-
ing zones of different heights in the lower layer (Fig. 
4). 
 
 

 
Figure 2. Mesh Type A.  

 
Figure 3. Mesh Type B. 

 
 

 
Figure 4. Mesh Type C. 

 

4 INFLUENCE OF THE ZONE DENSITY 

The investigations of the influence of the zone den-
sity were made by means of mesh Type C. Four dif-
ferent mesh resolutions were developed for a hori-
zontal grid resolution of 100 m as well as 50 m. The 
depth of the failure zone (transition zone between 
moving rock mass and rock remaining in place) of 
the mass movement has been estimated with about 
350 m.  Therefore the region of interest (upper layer 
with uniform zones) was modeled as a layer with a 
thickness of 400 m. The investigated zone densities 
of the upper layer are specified in Tables 1 & 2. 

 
Table 1. Zone density – 100 m grid distance. __________________________________________________ 
    Mesh Zone height Number of zones   
Resolution (m) in the z-direction Ratio B:H __________________________________________________ 
gross 100 4 1:1 
coarse 50 8 2:1 
fine 25 16 4:1 
very fine 20 20 5:1 __________________________________________________ 



Table 2. Zone density – 50 m grid distance. __________________________________________________ 
    Mesh Zone height Number of zones   
Resolution (m) in the z-direction Ratio B:H __________________________________________________ 
gross 50 8 1:1 
coarse 25 16 2:1 
fine 12.5 32 4:1 
very fine 10 40 5:1 __________________________________________________  

4.1 Modeling procedure 
The behavior of the rock was simulated by a Mohr-
Coulomb material model with the parameters listed 
in Table 3. The in situ stresses were calculated based 
on pure elastic material behavior. Plastic deforma-
tions were prevented by high strength of the rock. 
After calculating the in situ stresses, the failure was 
triggered by reduction of the strength parameters ac-
cording to the values given in Table 3.  

 
 

Table 3. Material properties. __________________________________________________ 
 ρ E ν c ϕ   
 (kg/m³) (GPa)  (kPa) (°)  __________________________________________________ 
 2700 8.0 0.25 400 20 __________________________________________________ 

 
 
The material strength parameters for the limited 

equilibrium and the factor of safety were determined 
by using the shear strength reduction technique 
(Zienkiewciz et al. 1975) and an algorithm using the 
bisection method implemented in FLAC3D (Zettler et 
al. 1999). 

4.2 Initial failure mechanism and the detached rock 
volume 

The distributions of the shear strain rate of all inves-
tigated models (Figs. 7 & 8) indicate a zone of 
maximum shear strain rate at a certain depth. Below 
this shear band there are no displacements and above 
it they have an approximately constant value. The 
displacements within the shear band (failure zone) 
are decreasing continuously with increasing depth. 
This mechanical behavior of the rock mass identifies 
the failure mode “slope creep” (Poisel & Preh 2004). 
The distribution of displacements modeled by 
FLAC3D (Fig. 6) shows the typical course for “block 
slope creep” as described by Poisel (1998, Fig. 5). 

The shear band represents the transition zone be-
tween the moving mass and the rock remaining in 
place. Thus the volume inside the outer boundary of 
the shear band (failure surface) is the detached rock 
volume. The investigations show that the width of 
the shear band decreases by increasing the mesh 
resolution (Figs. 7 & 8), while the volume of the 
mass inside the shear band is increasing. The de-
tached rock volume is decreasing insignificantly by 
increasing the mesh resolution. 
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Figure 5. Diagram of slope creep mechanism and characteristic 
distribution of displacement rates; a) small part of cohesion in 
rock mass strength (outcrop bending); b) great part of cohesion 
in rock mass strength (block slope creep) (Poisel 1998). 

 
 
 

 
Figure 6. Characteristic distribution of displacement rates 
modeled by FLAC3D, illustrated by the comparison of the unde-
formed and deformed mesh. 

 
 

4.3 Factor of safety 
The investigation shows that the mesh resolution 
(grid size) affects the calculated factor of safety. The 
factor of safety is decreasing by increasing the mesh 
resolution and converges to a value of η = 1.25. The 
factor of safety and the critical values of the shear 
strength depending on the mesh resolution are listed 
in Table 4. 

 
 

Table 4. Mesh resolution and factor of safety. __________________________________________________ 
 Mesh Factor ccrit ϕcrit 
 Resolution of safety (kPa) (°) __________________________________________________ 
 gross 1.34 299 23.3 
 coarse 1.29 310 24.1 
 fine 1.27 316 24.4 
 very fine 1.25 320 24.8 __________________________________________________ 



 
a) Contour of shear strain rate for the coarse mesh. 

 
 
 

 
b) Contour of shear strain rate for the very fine mesh. 

 
 
 

 
c) Comparison between coarse and very fine mesh (the white 
line represents the shear band of the very fine mesh). 

 
Figure 7. Mesh resolution and shear strain rate; horizontal grid 
distance 100 m. 

 
a) Contour of shear strain rate for the gross mesh. 

 
 
 

 
b) Contour of shear strain rate for the very fine mesh. 

 
 
 

 
c) Comparison between gross and very fine mesh (the white 
line represents the shear band of the very fine mesh). 

 
Figure 8. Mesh resolution and shear strain rate; horizontal grid 
distance 50 m. 



5 CONCLUSION 

Calculations using a coarse mesh result in a rela-
tively high factor of safety. Consequently the stabil-
ity of the slope is overestimated. This is a dangerous 
factor, because everyone is tended to use coarse 
meshes to shorten the solution time. 

Fine meshes reproduce the failure mechanism and 
the width of the shear band in a more accurate way 
than coarse meshes. Furthermore the volume of the 
mass inside the shear band is increasing by using 
fine meshes. 

Mesh size investigations are always necessary if 
numerical models based on grids, like finite element 
or finite difference codes, are used. 
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